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INTRODUCTION

Tactical and strategic vehicular and aircraft targets are observed in the
infrared (IR) bands in general by both gray body radiation of the equipment
frame and by hot gas radiation from the exhaust plume. It is imperative for
Army systems designers to have validated models for predicting these radiance
levels to build or improve their detection systems. Because of their mobility
and versatility in terms of required landing terrain, helicopters play an ever
expanding role in military activities. Yet, because they are slow moving or
stationary, they are highly vulnerable to enemy antiaircraft weaponry. Hence,
the detection and suppression of aircraft signatures, which may be made
possible as a result of model validating "hot-through-cold" radiative transfer
measurements, is a vital issue in a wide variety of military scenarios. The
advantage of long-range detection is shown in the scenario pair of figure la
and h. At present, some helicopter signatures (visible and IR) have been
addressed by the helicopter IR detection estimate (HIDE) model. 1 Use of the
HIKE model has resulted in several system design changes such as low
spectrally reflecting paints, modification of helicopter window
configur3tions, and introduction of jammer designs for antihelicopter
missiles. Still, existing models and data bases do not accurately
characterize the hot gas IR plume or the radiative transfer of the plume
emissions through the atmosphere. Much of this uncertainty can be eliminated
if the correlation between the hot gas emission and atmospheric-path
absorption lines are accurately modeled. Figure 2 shows that either
visibility or range reduces the visible contrast; the plume's hot gas IR
emission dominates the signature. With today's fuels, the vibration-rotation
bands of the IR active water vapor and carbon dioxide molecules (H 20 and CO2 )
dominate the plume spectrum. 2

limited number of controlled "hot-through-cold" radiative transfer measure-
ments have been made which demonstrate the existence of correlation effects
between the hot emission and cold absorption line spectra of likespecies.3  Statistical band models have been developed which appear to

1Steve Smith and Dick Higbey, 1974, "HIDE Computer Model an IRCM Evaluation
Tool," Proceedings of the 12th Infrared Imaging Systems (IRIS) Symposium on IR
Countermeasures, 2:7

2 Westinghouse Electric Corporation, 1974, Evaluation of IR Countermeasures
Infrared Suppressor Report, prepared for Program Manager, US Arm Aviation
Systems Command, AMCPM-AEWSPS, under Contract DAAJO1-72-0447, Exhibit A, Data
ADO3

3G. H. Lindquist, C. B. Arnold, and R. L. Spellicy, 1975, "Atmospheric
Absorption Applied to Plume Emission. Experimental and Analytical Investiga-
tions of Hot Gas Emission Attenuated by Cold Gases," AFRPL-TR-75-30, Air Force
Rocket Propulsion Laboratory, Edwards Air Force Base, CA. AD A015075

4Stephen J. Young, 1977, "Evaluation of Nonisothermal Band Models for H20," J
Quant Spec Rad Trans 18:29
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HELICOPTER NOT DETECTED AT LONGER RANGE

7-v:)

-- f

.TOO LATE,

/

(a)

FIRE,

-C-

REMOTE OBSERVATION OF HELICOPTER

(b)

Figure 1. Scenario pair depicting the advantage of long-range detection of
enemy helicopters and advantages of signature suppression.
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adequately handle these correlation effects,5 but an extensive set of param-
eters is required before the models can be adequately tested or used to sig-
nificantly improve current predictive capabilities. The band model approach
to the characterization of correlation effects has distinct advantages over
other approaches (for example, high resolution definition of both the plume
emission and atmospheric absorption) in that correlation effects are accounted
for at moderate resolution by treating the total path (plume and atmosphere)
as a single highly inhomogenous path. Hence, the moderate resolution of the
system detectors does not have to be exceeded in calculating the plume trans-
mission. This requirement is in line with the tracking requirements of rapid
propagation predictions for which detector system models such as the HIDE
model are tailored. Additionally, a validated band model could be used as an
investigative tool which, in conjunction with well characterized propagated
radiance measurements of an actual plume source, could be used to better
define the physical makeup and hence quantitative definition of the IR plume
source for existing vehicles and aircraft.

The measurements of "hot-through-cold" radiative transfer characteristics and
the necessary band model parameters is relatively straightforward but not
without experimental difficulties. The components required are basically a
hot gas source, a controlled long atmospheric path, and a spectrally scanning
detector. The unique hot gas cell source is temperature controlled from 500
to 1100 K and is fitted with appropriate cell windows capable of withstanding
the high temperature and yet having the required broadband IR transmission
characteristics. At present, the Army is interested in four detection bands
between 1.5pm and 5.OUm.6 Whether or not these are the optimum spectral bands
has not been adequately addressed to date. A controlled long atmospheric path
is obtained by using an ASL developed White-type absorption cell.' The cell
is stainless steel, oil free, temperature controlled, bakeable, and automated
for single person use with remote control mirror adjustments. Pathlengths up
to 2 km can be obtained with the 21-m White cell optics.8 The ASL facility is
thus well suited to simulate atmospheric paths in the range between 0.6 to 3.0
km which are presently of primary interest. For simulations of higher alti-
tudes, the optical depth of paths substantially greater than the actual 2 km
geometric path can easily be matched. A Nicolett 7000 series FTS is available
at the ASL facility. With spectral resolution to 0.04 cm-1 , the FTS can
easily handle the typical 3 to 5 cm-1 moderate resolution needed for band
model work and give the flexibility of later investigating high resolution

5Stephen J. Young, 1977, "Nonisothermal Band Model Theory," J Quant Spec Rad
Trans 18:1

6 Westinghouse Electric Corporation, 1975, Notes on Evaluation of IR Coun-
termeasures; Subject: Standardized Detector Responses, reported to US Army
Aviation System Command, AMCPM-ASE, under Contract DAAJ01-72-C-0447, (P6C),
Data Item FOB

7 Wendell R. Watkins and Richard G. Dixon, 1979, "Automation of Long-Path
Absorption Cell Measurements," Rev'Sci Inst 50:86
8John U. White, 1942, "Long Optical Paths of Large Aperture," J Opt Soc Am

32:285
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'hot-through-cold" propa,;atod radiance for potential long-range plume detec-
tion using narrow-band sensors. These three major pieces of equipment (the
hot gas source, thie long path absorotcio' cell. and the FTS) comprise the core
of the unique ASL facility for investigating hot. gaseous plume radiative
transfer.

THEORY AND BA~kGROUND

The basic problem of c,)Y-'ati,-n of emission and absorption. lines of like
gaseous species stl-ms from iie app~roach mnrst existing models take in assessing
the 'hot-through-cold' radiv-iet ~ fr The HIDE model, frexample,
characterizes the plume ervi . , on separately from~ the atmofspheric path trans-
mission. The source ;-a. r s-iion spel'-.a art, gerer~ted at moderate reso-
lution -5 cm- which tw~o or'1e of iiacnit,,de larger t.han the typical
half-widths o~r the LOu -772 thre 1.2)n to c.Cgn region.)

The moderate rosolution hot cas '-3d~nce spect'wm is then IfU~tiplied by the
moderate ecuto o'j tth~- - i'osmission soectrimr. However, this
procedure generally dr- So l oc a- v he (niriprt lrn'v erte r,2solution "hot-
through-cold" propagat., - *wiancc oJr i corre& atizn is present. Mathe-
matically, t his Z() ~,~t~ni ~rn t te fact that the product of
the means ~s ncT grne-.l y enu< 'Co thc( mcf the products for two cor-
-elated sets o- nu 'm!)rs-

The plan of attack that has been deve 3ped for addressing the correlation
pe'obien is to: (! def4-j the fm-Pni 4- existing noncorrelating radia-

tfetransfer, models, (2) validatce exjstirq correlating statistical band
modlels (4ncludinci refinement of the 7presz ntly Gncdequate band model parameter
data raean,-; 3) determine tn'e mordels azoo',cpriate fo,,r improving the predic-
tive r:apabili1t~es cl- ex'sting ;ijstem,- models. This process requires accurately
characterizpd aeasure-en '.s oif 'hot-th-1cujh) -- old" radiative transfer and hence
the assembly of a facility with this capability. Before giving a detailed
description of the measurements of the ASL facility, a brief outline of sta-
tistica' band model theo'y is in order to better define the impact these
mneasrprien-t will have on improving caicilationl capabilities for propagated
i adi ances.

Several facet-% arc important to statisticl-_4 bend models. These facets are
'ailo-ed to account for correlat~on effects for moderate spectral resolution
"h ot- th rough -ca! d" rad-iarce ca'ct) ,ations and 'equire temperature dependent
p~arameters wit), moderate spectral resolution instead of a complete high reso-
lution listing of absorption and emission lines. They are presently limited
by lack of intermediate temperature (KCO tc 1200 K) measurements from which to
extract the band model parameters. Finally, the facets must be validated by
using "hot-through-cold" radiative transfer data spanning the linear, square
root, and transition regions of the curve of: growth.

9 R. A. McClatchey et al, lq73, Ar-CRL Absorption Line Parameter Compilation,"
AFGRL-TR-73-0096. Air Fo;re;- ?oh/iLS- Lbratory, Hanscom Air Force Base, MA
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The secret to the success of statistical band models in accounting for corre-
lation effects is that the theoretical approach does not separate the plume
from the atmospheric path. instead, in the band model the whole path (the
plume and intervening atmosphere) is considered as a singqle highly inhomoge-
nous path and the combined Prp jated radiance obs;eryed at.' location removed
from the plume source is calculated (figure 3). There is, of course, a strong
spectral dependence of the eini tted, absorhe6, Vw r paqatr-d ra-diance on
frequency and path characteristic,- Two lirnitirui 2Thcs m , hamdled appro-
priately by the band models a,. cufinct-'r of ~ n strengtri
grows linearly with incv'ea! i,o, cftical deoth v!n thr 11 ir is ao and
relatively weak but grows --a:'Z lly after '"e ~i ni, ccome stronO with
an opaque central maximum !s Kc.irn aij:e o( :ne met~lor, ar tai
lored to match these tw , liht+1,, tt~nditiior- hn ra'vv -c~

modified to correct for orn -T r!cue fat' .'r'ut~~W~ as
extensively detailed in a -1-,. or- 111 )norr

Several physical assuipt-oim c-.,i
sions or absorptions of & : ''pt o
nor their justifications C

and absorption lines in a cgv 0.re ~ ~-e'
distributed and the radi-ic e_
from a hot gaseous plume. dh-jstr-
the regi on Av. This proceru- i r ~ ' A -

tion for the line strength.,13 )n ~ ( f tf ec
ti ve parameters for the patn r,- t ',

and a (essentially the rc - -m-'' ' r 'a s
respectively). 'The time say-*, -,'c:-e.' r A ,r
is that the frequency integra-_"o,, c~r, be -!onec-.,- ari Fo y-"i
the spatial integration 37o0j ,g -,th. 3 0 -"'L; -Ir U,

sity for a detailed c -np i o-- 
4  

d tr
strengths. For a part-'rul'a' :-2 f ~ l~e 1'a I
uated by integrating the _t",>-~w ath c
interest and substituting the~ into tle anj -", P'nr po rep s s
The isothermal band mode' Tearamne ? are jtac Cf 2,± Sie U Cil

of the gas radiance and asrK for qiart s~ pae ou, Arr _ 0
mixtures and temperatures.

Evaluation of the atmospher-*:c :r a ~io ~:c-t~sic'- vehicles and
aircraft generally requires mo:- -)chth 'rai 3:- ,,uiie ernssions. In
general, the calculation rf, frar-c nmissions rr~ ther peatenthrough the
atmosphere can ")e treated with -ls~iable - v st g r, stn mul tifaceted
models and standard atmoso ,erir -ismtszs -- c.,n or,_- the skin emissivities,
reflectivi- ies, and temperatures -re known. 7he p obIem ofl evaluating plume
emissions and their atmospheric propagationn howvcr. is far more difficult,
not only because of a high degree oc' spnctral rr"'epresent as, well as the
complication of line position correlatior bet~wc'- 1 i ke emitting and absorbing
gas species, but also because of 1,o 1.'ck of jn data base for either
"line-by-line" or statistical band io&ca -,Jlatior,_

5 Stephen J. Young, 1977, "Nonisothermal Band Model Theory," J Quant Spec Rad
Trans 18:1
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The "line-by-line" approach, because it sums the contributions of the indi-
vidual spectral lines and does so at a resolutioni small compared to a typical
line width, inherently accounts for line correlation and spectral structure.
Unfortunately, this type of calculation is usually prohibitively expensive and
is limited to temperatures below 700 K, the temperature regime for which the
line parameter atlas 9 contains all or most of the significant spectral
lines. Also, evaluation of the required line parameters (line strength, line
position, and line width) at elevated temperatures is an involved process
which is in general not warranted (except in the wings of absorption bands)
because the increased line density and inherent line overlap destroys the high
resolution structure. Band models, however, are not so limited because the
band model parameters can be generated in a somewhat straightforward manner
regardless of the line density or line overlap.

The available bana model parameters are the National Aeronautics and Space
Administration (NASA) (General Dynamics) parameters10 and those derivable from
the Air Force Geophysics Laboratory (AFGL) atmospheric absorption line tabula-
tion.9  The NASA parameters for water vapor are measured values, based on
emission and absorption measurements by using a long strip burner
(a > 1200 K), which were extrapolated to cover temperatures below 1200 K,
while the CO2 parameters were derived from theoretical calculations based on

observed spectroscopic parameters for band positions but relied on harmonic
oscillator approximations for the excited state band strengths. In general,
the NASA H20 parameters give reasonable agreement with observed radiance

levels at temperatures near or above 1200 K, while the CO2 parameters are

seriously in error in the 2.7om and in the 4.3om bands at 1200 K. Also, as
expected, the NASA parameters do not accurately predict atmospheric transmis-
sion or low temperature emissions because of their dependence on high tempera-
ture data.

Parameters derived from the AFGL compilation have exactly opposite character-
istics because the tabulation, being suited for atmospheric applications, does
not contain high rotational lines or excited state bands. Water vapor param-
eters generated from this tabulation show reasonable agreement with observed
radiance levels near band centers, even at temperatures about 1200 K, but
seriously underpredict the radiance in the band wings. For CO2 a similar

situation is seen in the 4.3rm band while the 2.7im band is underpredicted
throughout. At lower temperatures, such as those encountered in the atmo-
sphere, the AFGL generated pardmeters give reasonable agreement with transmit-
tances in both the 4.3jim region and the 2.7vm region.

Therefore, two separate sets of band model parameters may be used at either
elevated temperatures (NASA, 6 > 1200 K) or near atmospheric temperatures
(AFGL, 300 K < a < 700 K). However, no such set exists for intermediate

9 R. A. McClatchey et al, 1973, AFCRL Absorption Line Parameter Compilation,"
AFCRL-TR-73-0096, Air Force Geophysics Laborator, Hanscom Air Force Base, MA

10C. B. Ludwid et al, 1973, Handbook of Infrared Radiation from Combustion
Gases, NASA SP-3080, Marshal Space Flight Center, Huntsville, AL
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temperatures (700 to 1200 K) of importance to aircraft or vehicular detection
except for those generated by Young through interpolation of the NASA and AFGL
values.4  As expected, the lack of intermediate temperature (700 to 1200 K)
band model parameters is accompanied by a lack of controlled intermediate
temperature data required for either validation of the models or extraction of
the required parameters.

EXPERIMENTAL FACILITY

As discussed in the introduction of this report, the basic "hot-through-cold"
measurement system is comprised of three major pieces of equipment--the hot
gas source, the long path absorption cell, and the FTS. Figure 5 shows the
equipment in an experimental setup and also shows a blackbody source, f-number
matching optics, and two directional mirrors which are used to steer the bed-
through the White cell for extracting "hot-through-cold" radiance spectra 3r

to bypass the cell for extracting separate spectra of the hot gas source and
cell transmission. By using this setup, absorption cell pathlenoths of more
than 1.0 km can easily be obtained. The hot cell, White cell, and FTS were
optically coupled so that a rapid rate of data collection could be maintained
for a 1.0 km pathlength without losing any FTS resolution. The iritial system
alignment was accomplished by replacing the blackbody source with a helium-
neon (HeNe) laser. The f-number matching lenses, the optical axis of the hot
cell, and the directional mirrors were carefully positioned one element at a
time. A second and permanent HeNe alignment laser, to be discussed in the
following paragraph, was coupled into the FTS so as to retrace the optical
path back to the first HeNe laser. The first HeNe laser was removed and then
the blackbody source was put back into the system. This arrangement allows
precision visible alignment of the entire system independent of the source
intensity.

The Nicolet 7000 series FTS tailored for this measurement system is shown in
figure 6. The FTS accommodates a 5-cm diameter input and gives up to 0.06
cm"I resolution between 10 to 5000 cm-1 . The resolution is variable from 0.06
to 8 cm"1 , which meets the moderate and the high resolution requirements for
"hot-through-cold" measurements, The presently used germanium coated K!3r
beamsplitter (BSIR in figure 6) is designed for use in the 400 to 5000 cm-1

range. InAs, HgCdTe, and InSb detectors (1) in figure 6) are on hand and span
the entire 1.5wm to 10.Oum region. The FTS data system is quite flexible and
allows for storing the interferogram data on discs as well as displaying and
comparing the resulting transform spectra on an integral CRT. Finally, the
centerline laser prism (P1 in figure 6) used for monitoring the FTS mirror
movement was silvered on the back surface. This prism, in conjunction with a
flat positioning mirror M6 and the second and permanent system HeNe alignment
laser (described earlier), allows visible alignment of the entire optical
system of figure 5 including the FTS input beam.

The 21-m long path absorption cell used in the "hot-through-cold" measurement
system has already been used in several previous experiments including water

4 Stephen J. Young, 1977, "Evaluation of Nonisothermal Band Models for H20," J

Quant Spec Rad Trans 18:29
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Figure 6. Detailed schematic of the Nicolet 7000 series FTS where M1 is an
off-axis parabolic mirror with 20.8-cm focal length, D is the system
detector, M2 are flat directional mirrors, M3 is the moving mirror assembly,
M4 is a fixed mirror for the IR beam and reference laser, M5 is a fixed mirror
for the white light source, BSWL is the white light beamsplitter, BSIR is the
IR/reference laser beamsplitter, LD is the centerline reference laser
detector, WLD is the white light detector, WLS is the white light source, Li
is the reference HeNe laser, P1 is the centerline laser prism with silvered
back surface, M6 is a micrometer adjustable flat mirror, and L2 is the system
HeNe alignment laser.
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vapor absorption studies. 11 12 13 The automated mirror controls allow simple
one person alignment as well as path differencing14 capability when measuring
the cell transmittance. The cell gas handling system, including an oil free
turbo molecular pump as well as the cell temperature control system, allows
relatively high water content atmospheres to be used. Since the ends of the
cell which contain the mirrors can be heated independently from the rest of
the cell, 1 5 relative humidities approaching 100 percent can be used if neces-
sary. Also, since an FTS is used in conjunction with the cell, the purity of
the cell's atmosphere can easily be determined.

The most challenging technical problem encountered in developing this system
was the design and fabrication of a heatable absorption cell employing long-
wavelength (transmits well through 6.5um) transmitting yet brittle windows
which could-maintain a vacuum seal without breaking even when temperatures
were recycled between ambient to at least 1100 K. The final design, which was
found to be highly successful, is shown in figure 7. This desiqn uses dual
windows so that minimal pressure differential can be maintained across the hot
inner window, with dual "O"-ring seals on both windows to allow for thermal
expansion. The inner SrF2 windows are sealed with silver coated metallic

"O"-rings while the outer cooler windows (SrF 2 or BaF 2 ) are sealed with sili-

cone "O"-rings. Preliminary tests have shown that this cell is capable of
maintaining a vacuum seal at temperatures from ambient to at least 1000 K and
that the cell can be repeatedly cycled over tthis range without damage to the
inner windows. The cell is electrically heated, and the temperature is moni-
tored internally with three thermocouples to insure uniformity.

An elaborate fill system shown in figure 8 for producing hot " 20 and CO2 gas

fills is attached to the hot gas cell. The entire fill system can be evacu-
ated by using a cold-trapped vacuum pump. The pressure is monitored by using
a 0- to 1000-torr pressure gauge. The water is boiled into the system from a
constant temperature water bath. The gas can be circulated through the inner
chamber, and the dew point monitored even when a mixture of gases is used.
Because the water concentrations in simulated plumes are well above the room
temperature dew point, all the gas fill system lines which contain 1420 are

tIWendell R. Watkirrs and Kenneth 0. White, 1977, "Water-Vapor-Continuum

Absorption Measurements (3.5-4.Oum) Using HDO Depleted Water," Opt Lett 1:31

12Kenneth 0. White et al, 1978, "Water Vapor Continuum Absorption in the 3.5-
4.0im Region," Appl Opt 17:2711

13Wendell R. Watkins et al, 1979, "Pressure Dependence of the Water Vapor
Continuum Absorption in the 3.5-4.Oum Region," Appl Opt 18:1149

14Wendell R. Watkins, 1976, "Path Differencing: An Improvement to Multipass
Absorption Cell Measurements," AOpt 15:16

'5Darrell E. Burch, 1980, "Recent Measurements of the 4pm H20 Continuum,"
presented at the 1980 Annual Review Conference on Atmospheric Transmission
Models, Air Force Geophysics Laboratory, Hanscom Air Force Base, MA
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II

HOT CELL,

Ow
TCI TC2 TC3 TO COLD TRAP

PUMP BOTTLED GASES AND)VACP

SENSOR

BARATRON

DIFFERENTIAL PRESSURE

CONTROLLED TEMP. PRESSURE GAUGE SENSOR
WATER BATH

Figure 8. Schematic of the gas filling system for the hot gas cell where TCL,
TC2, and TC3 are thermocouples for monitoring the gas temperature,
and IW and OW are, respectively, the hot gas cell inner and outer
chamber windows.
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heated to 600C to prevent condensation. CO2 0 and N2 can be introduced

into the hot gas cell from high purity fill bottles. A separate fill bottle

of N2 is used for equalizing the outer and inner chambers of the hot cell, and

the differential pressure across the inner windows is monitored with a two-
sided 0- to 760-torr pressure gauge.

Because the input and output windows of the long path absorption cell are
approximately 2 m above the laboratory floor, concrete pedestals were fabri-
cated to elevate the surfaces of the 1.2-m by 3.6-m and the 1.2-m by 1.8-m
optical tables used for mounting all of the system components. Since the room
air contains absorbing gases, the entire system is housed in a purge box so
that it can be filled with an inert gas to eliminate this background absorp-
tion.

14EASUREMENT APPROACH

The difficult task of developing a systematic measurement approach to obtain
the "hot-through-cold" measurement spectra for system model validation and the
necessary data base for statistical band model use was greatly simplified by
the assistance of Robert L. Spellicy, an expert in this field. After review-
ing his previous work, 3 present efforts in related areas,16 and helpful
discussions, we defined a complex yet efficient measurement procedure. In
retrospect, the etalon and multiple reflection effects of the present hot cell
design will be eliminated from any future hot cells by using wedges for win-
dows and tilting the windows off axis.

The quantity which is sought is the hot gas radiance times the transmission of
the absorption cell gas. Unfortunately, other radiance sources and transmis-
sion losses must be accounted for or ratioed out cf the measured radiance
quantity. The first step is to examine the radiance from the hot gas cell
depicted in figure 9. Excluding the multiple reflection terms for the
present, there are two sources of radiance from the hot gas cell: (1) the hot* L*

gas radiance, L ag, where L is the Planck function for the inner cell temper-

ature, and a9 is the absorption of the hot cell gas; and (2) L*a which is the

radiance from the inner cell windows which are also hot. Here a is the
absorptance of the windows. These two sources result in three radiance terms
which exit the hot cell:

3G. H. Lindquist, C. B. Arnold, and R. L. Spellicy, 1975, "Atmospheric
Absorption Applied to Plume Emission. Experimental and Analytical Investiga-
tions of Hot Gas Emission Attenuated by Cold Gases," AFRPL-TR-75-30, Air Force
Rocket Propulsion Laboratory, Edwards Air Force Base, CA. AD A015075

16Robert L. Spellicy, Progress Reports 26 Jan 80 - 29 Feb 80 and 29 Feb 80 -

31 Mar 80, under grant Environmental Protection Agency Grant R-805956-01, by
OptiMetrics, Inc., PO Drawer E, White Sands Missile Range, NM
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LcaT' from the front inner window where T' is the transmission of the
outer front window of the cell,

L agTT' from the hot gas where T is the transmission of the inner front
window of the cell, and

L'a(1 - a )TT' from the back window where (1 - a g) represents the trans-

mission of the hot cell gas charge.

The amount of the radiance reaching the FTS is diminished by the transmission

of all the optics in the system, -s, as well as the transmission of the long

oIath White cell gas, T/wc. Hence, the propagated radiance seen at the FTS, Y.

is given by:

Y = [L*(' + L 9gT-' + L a1 - cE )UT T /S (1)

g g s9

Grouping terms of hot gas radiance and cell window radiance yields

= gWlC [TT' (1 - c)] + LaT w/c [TT (1 + T)] • (2)

Note (as will be detailed later for multiple reflections) that for the window
T does not equal (1 - a) because of the window surface reflections. Also, for
an empty hot cell ag + 0 and the propagated radiance is given by just the

second term on the right hand side of equation (2). This term will thus be
referred to as a "cell" scan or

"cell" = L aT [T'T (1 + T)] (3)

Then, to obtain the "hot-through-cold" propagated radiance, L*agT /c, evaluate

[TT'TS(1 - a)]. To begin, a for the SrF2 windows is on the order of 10-4

cm" , and hence (1 - a) goes to 1 within system measurement accuracies. To

evaluate TT'TS, a blackbody source is used. Its propagated radiance, YBB,

through an empty hot cell (ag + 0) and absorption cell (aw/c + 0) is given by:

* *

YBB LBB T'TT'TS + L a[T'T S(1 + T)] , (4)
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p--I

where LB is the blackbody source radiance which can be calculated frnm the

blackbody source temperature. Again the second term on the right side of
equation (4) can easily be measured by blocking the blackbody source. This
term will be denoted as the "cell KT" scan. ,inally, T and z' can be calcu-
lated for the hot cell windows knowing the index of refraction .n and r' since

T = (I - p)2(l - (5)

and

2

P (6)

where P is the window surface reflectance. Therefore, by using equations 2
and 4, the "hot-through-cold" propagated radiance can be given by:

L w/c = Y -"cell" '
g g YBB - "cell MT'

To begin the discussion of how mutliple reflections complicate the above
analysis, the case of one inner window flat will be addressed. Figure 10
shows the resultant multiple reflections of an incident beam with intensity Io
where the beam experiences a reflection p and a transmission loss of
(1 - a). Hence, for a wedge the transmitted beam intensity is simply

1(1 - p) 2 (l - a) .

For the multiply reflected beam the resultant intensity, I, is given by:

I = I0(1 - p)2(1 - a)[1 + p2(1 - a)2 + p4(l - a)4 + ] (8)
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and, since p .nd a are between 0 and 1, the series identity

[ i  I
x T x (9)

i=0

can be applied. This results in

I (I1I - p)2(l- - (

- - 2 (1 l0T (10)fI p2 1 -a)2  0

where T is the window multiple reflection transmittance. A similar derivation
can be used to get the multiple reflection window reflectance R. The resul-
tant expressions are given by:

T = (1 - p)2 (1 - a)/[1 - p2(1 - a)2] (11)

and

R = p{l + (I - p)2 (l .,)2/[ - p2(1 _ a.)2]1 (12)

with similar expressions for T' and R' for the outer cell windows. When the
multiple reflection terms are included, the resultant expression for the
propagated "hot-through-cold" radiance becomes:

,LTw/c =Y - LaTw/c T [T/(i - R'R)]{1 + T/[I - R(1 - )1

L a T g (13)
g g T'Tts(I - a)/[1 - R(1 - ag )](1 - R'R)

A dependence of the second numerator term of equation 13 now appears upon a9

through the expression {1 + T/[1 - R(1 - a g)]}. This was not the case previ-

ously in equation 2 where multiple reflection effects were ignored. Fortu-
nately, the "cell" scan for the multiple reflection case given by
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* W/C -,
"cell" = L aT9  TsET /(I - R'R)][1 + T/(1 - R)] (14)

is very simit.r to the second numerator term in equation 13. The only differ-
ence is the omission of the (1 - cg) in the last term. For the cell windows

used T %-- T' = 0.94 and R = R' 0.058, and the resulting error in using the
"cell" scan to approximate the second numerator term in equation 13 would be
as follows for various values of ag:

[1___ + Tf -~ R) =. 1.01 if a = 0.5g!Il + TIFI - R'! - ag)]"
- ' 1.00 if ag = 0.0

Whether this error is significant depends on the measurement error bound, and
if significant it can be corrected to first order by using calculated correc-
tion coefficients.

The blackbody source can again be used for evaluating the denominator of
equation 13 with the resulting approximation being given by

YBB - "cell MT" T2T'2  s
L* W/c (1 - R2 )(1 (16)
BBTg

The major difference other, than simply terms of T, T', R, and R' is the omis-

sion of the (1 - a)/[1 - R(1 - ag)] term which again can be corrected for if
necessary.

A typical set of measurements for determination of "hot-through-cold" radiance
will then consist of:

16

1. A "cell" measurement with both the hot cell and White cell empty

2. An absorption measurement of the hot cell gas

3. A radiance measurement of the hot gas through an empty White cell

1 6Robert L. Spellicy, Progress Reports 26 Jan 80 - 29 Feb 80 and 29 Feb 80 -

31 Mar 80, under grant Environmental Protection Agency Grant R-805956-01, by
OptiMetrics, Inc., PD Drawer E, White Sands Missile Range, NM
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4. A transmissicn measurement 'ot the White cell cjas dfter filiqg by
using either a direct measurement or i'ath differencirng

5. A "hot-through-cold" meisurement for a giver hot ceil and White cel;
fill.

Measurements I through 4 are requireG to evaluate the denominator of equation
13; measurement 4, in corjunction with measurement 1, is required to evaluate
the second term in the numerator of equation 13; and measurement 5 is required
to determine the desired "hot-through-cold" radiance. This particular
sequence of measurements also supplies the hot gas radance and cold cell
transmittance independeritly so that the product of these two may b ± compared
with the measured "hot-through-cold" rad43nce to evaluate the significance of
line correlation effects.

CONCLUSIONS

A measurement facility with unique capah-lities for handlir. "hot-through-
cold" radiative transfer measurements has beer a;senbled at ASL. The system
has been tailored for addressin g problems of current Army interest of plume
propagatio model validation for intermediate temoerature plumes (500 to
1200 K) over the 1.5pm to 5.0pm soectral ranqe (provided the appropriate beam-
splitters and detectors are used). The system has been designed to be as
flexible as possible. Moderate 3 to 5 cm-1 resolution will be used initially,
but the available FTS capability of up to 0.06 cm"- has not been compromised
through the design process. Likewise, the five-step measurement scheme which
was selected allows for model validatior measurements and assessment of corre-
lation effects of like emitting and absorbing molecules on radiative transfer,
and also provides the spectra required to assess the validity of the inter-
mediate temperature data base now used in statistical band model calcula-
tions. Also, the capability of expanding the spectral range for measurements
beyond the 5im limit was not eliminated in the hot cell design by judicious
choice of window materials.

The ASL facility can now be used to address a yriad of heretofore unaddres-
sable exoerimental roblems related to hot gaseous plume radiative transfer.
Although the initial emphasis was to be placed on the 2.7urm H20 band, the

present FTS beamsplitter and detector configuration does not span the wave-
length range between 1.5wm to 2.Ourn. Hence, the longer wavelength end of the
1.5rm to 5.Ounm range of the presert detector systems will be addressed first
with the resulting "hot-through-cold" measurements to be compared with exist-
ing model predictions to assess their degree of validity and define the scope
and direction of subsequent measurements. If the band model parameter data
base is found to be inadequate, an assessment for requirements for obtaining a
usable data base will be made. Also, by postponing the 2 .7 pm investigation
until a beamsplitter which also spans the 1.5im to 2.0utm region is purchased,
the subsequent necessity of duplicating the measurement spectra will be
avoided. Once spectra are taken over a region, the scope of the analysis is
essentially limited by funding levels only and not experimental measurement
data collection.
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